The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Dry Eye Disease (DED) is one of the most common ocular diseases: over five percent of US adults suffer from DED. Tear film instability is a known factor for DED, and is thought to be regulated in large part by the thin lipid layer that covers and stabilizes the tear film. In order to aid eye related disease diagnosis, this work proposes a novel paradigm in using computer vision techniques to numerically analyze the tear film lipid layer (TFLL) spread. Eleven videos of the tear film lipid layer spread are collected with a micro-interferometer and a subset are annotated. A tracking algorithm relying on various pillar computer vision techniques is developed. Our method can be found at https://easytear-dev.github.io/.
translated by 谷歌翻译
Multi-modal image-text models such as CLIP and LiT have demonstrated impressive performance on image classification benchmarks and their zero-shot generalization ability is particularly exciting. While the top-5 zero-shot accuracies of these models are very high, the top-1 accuracies are much lower (over 25% gap in some cases). We investigate the reasons for this performance gap and find that many of the failure cases are caused by ambiguity in the text prompts. First, we develop a simple and efficient zero-shot post-hoc method to identify images whose top-1 prediction is likely to be incorrect, by measuring consistency of the predictions w.r.t. multiple prompts and image transformations. We show that our procedure better predicts mistakes, outperforming the popular max logit baseline on selective prediction tasks. Next, we propose a simple and efficient way to improve accuracy on such uncertain images by making use of the WordNet hierarchy; specifically we augment the original class by incorporating its parent and children from the semantic label hierarchy, and plug the augmentation into text promts. We conduct experiments on both CLIP and LiT models with five different ImageNet-based datasets. For CLIP, our method improves the top-1 accuracy by 17.13% on the uncertain subset and 3.6% on the entire ImageNet validation set. We also show that our method improves across ImageNet shifted datasets and other model architectures such as LiT. Our proposed method is hyperparameter-free, requires no additional model training and can be easily scaled to other large multi-modal architectures.
translated by 谷歌翻译
Image super-resolution is a common task on mobile and IoT devices, where one often needs to upscale and enhance low-resolution images and video frames. While numerous solutions have been proposed for this problem in the past, they are usually not compatible with low-power mobile NPUs having many computational and memory constraints. In this Mobile AI challenge, we address this problem and propose the participants to design an efficient quantized image super-resolution solution that can demonstrate a real-time performance on mobile NPUs. The participants were provided with the DIV2K dataset and trained INT8 models to do a high-quality 3X image upscaling. The runtime of all models was evaluated on the Synaptics VS680 Smart Home board with a dedicated edge NPU capable of accelerating quantized neural networks. All proposed solutions are fully compatible with the above NPU, demonstrating an up to 60 FPS rate when reconstructing Full HD resolution images. A detailed description of all models developed in the challenge is provided in this paper.
translated by 谷歌翻译
Artificial Intelligence (AI) is having a tremendous impact across most areas of science. Applications of AI in healthcare have the potential to improve our ability to detect, diagnose, prognose, and intervene on human disease. For AI models to be used clinically, they need to be made safe, reproducible and robust, and the underlying software framework must be aware of the particularities (e.g. geometry, physiology, physics) of medical data being processed. This work introduces MONAI, a freely available, community-supported, and consortium-led PyTorch-based framework for deep learning in healthcare. MONAI extends PyTorch to support medical data, with a particular focus on imaging, and provide purpose-specific AI model architectures, transformations and utilities that streamline the development and deployment of medical AI models. MONAI follows best practices for software-development, providing an easy-to-use, robust, well-documented, and well-tested software framework. MONAI preserves the simple, additive, and compositional approach of its underlying PyTorch libraries. MONAI is being used by and receiving contributions from research, clinical and industrial teams from around the world, who are pursuing applications spanning nearly every aspect of healthcare.
translated by 谷歌翻译
Finetuning language models on a collection of datasets phrased as instructions has been shown to improve model performance and generalization to unseen tasks. In this paper we explore instruction finetuning with a particular focus on (1) scaling the number of tasks, (2) scaling the model size, and (3) finetuning on chain-of-thought data. We find that instruction finetuning with the above aspects dramatically improves performance on a variety of model classes (PaLM, T5, U-PaLM), prompting setups (zero-shot, few-shot, CoT), and evaluation benchmarks (MMLU, BBH, TyDiQA, MGSM, open-ended generation). For instance, Flan-PaLM 540B instruction-finetuned on 1.8K tasks outperforms PALM 540B by a large margin (+9.4% on average). Flan-PaLM 540B achieves state-of-the-art performance on several benchmarks, such as 75.2% on five-shot MMLU. We also publicly release Flan-T5 checkpoints, which achieve strong few-shot performance even compared to much larger models, such as PaLM 62B. Overall, instruction finetuning is a general method for improving the performance and usability of pretrained language models.
translated by 谷歌翻译
成功的材料选择对于设计和制造产品的设计自动化至关重要。设计师通过通过性能,制造性和可持续性评估选择最合适的材料来利用他们的知识和经验来创建高质量的设计。智能工具可以通过提供从先前的设计中学到的建议来帮助具有不同专业知识的设计师。为了实现这一目标,我们介绍了一个图表表示学习框架,该框架支持组装中身体的物质预测。我们将材料选择任务作为节点级预测任务,对CAD模型的汇编图表示,并使用图形神经网络(GNN)对其进行处理。在Fusion 360画廊数据集上执行的三个实验协议的评估表明我们的方法的可行性,达到了0.75 TOP-3 Micro-F1分数。提出的框架可以扩展到大型数据集,并将设计师的知识纳入学习过程。这些功能使该框架可以作为设计自动化的推荐系统以及未来工作的基准,从而缩小了人类设计师与智能设计代理之间的差距。
translated by 谷歌翻译
自动语音识别(ASR)需要对说话者的差异很强。语音转换(VC)修改了输入语音的扬声器特征。这是ASR数据增强的吸引人功能。在本文中,我们证明了语音转换可以用作数据增强技术,即使在包含2,456位扬声器的LibrisPeech上,也可以用作提高ASR性能。对于ASR增强,有必要对广泛的输入语音稳健。这激发了使用非自动回旋,非并行VC模型的使用,并在VC模型中使用了预验证的ASR编码器。这项工作表明,尽管包括许多演讲者,但演讲者的多样性可能仍然是ASR质量的限制。最后,对我们的风险投资性能的审讯为客观评估VC质量提供了有用的指标。
translated by 谷歌翻译
我们提出了一种新颖的方法,用于生成语音音频和单个“身份”图像的高分辨率视频。我们的方法基于卷积神经网络模型,该模型结合了预训练的样式Gener。我们将每个帧建模为Stylegan潜在空间中的一个点,以便视频对应于潜在空间的轨迹。培训网络分为两个阶段。第一阶段是根据语音话语调节潜在空间中的轨迹。为此,我们使用现有的编码器倒转发电机,将每个视频框架映射到潜在空间中。我们训练一个经常性的神经网络,以从语音话语绘制到图像发生器潜在空间中的位移。这些位移是相对于从训练数据集中所描绘的个体选择的身份图像的潜在空间的反向预测的。在第二阶段,我们通过在单个图像或任何选择的身份的简短视频上调整图像生成器来提高生成视频的视觉质量。我们对标准度量(PSNR,SSIM,FID和LMD)的模型进行评估,并表明它在两个常用数据集之一上的最新方法明显优于最新的最新方法,另一方面给出了可比的性能。最后,我们报告了验证模型组成部分的消融实验。可以在https://mohammedalghamdi.github.io/talking-heads-acm-mm上找到实验的代码和视频
translated by 谷歌翻译
在自动驾驶符号识别等任务中,强大的分类至关重要,因为错误分类的弊端可能是严重的。对抗性攻击威胁着神经网络分类器的鲁棒性,导致它们始终如一,自信地误导了道路标志。一种这样的攻击,基于阴影的攻击,通过应用自然的阴影来输入图像引起误解,从而导致人类观察者看起来很自然,但对这些分类器感到困惑。当前针对此类攻击的防御能力采用简单的对抗训练程序,分别在GTSRB和LISA测试集上获得相当低的25 \%和40 \%的鲁棒性。在本文中,我们提出了一种健壮,快速且可推广的方法,旨在在道路标志识别的背景下防御阴影攻击,以增强具有二进制自适应阈值和边缘图的源图像。我们从经验上表明了它针对影子攻击的稳健性,并重新制定了该问题,以表明其相似性$ \ varepsilon $基于扰动的攻击。实验结果表明,我们的边缘防御能力达到78 \%的鲁棒性,同时在GTSRB测试集上保持98 \%的良性测试精度,这是我们阈值防御的类似结果。链接到我们的代码是在论文中。
translated by 谷歌翻译